On Least Squares Estimation in a Simple Linear Regression Model with Periodically Correlated Errors: A Cautionary Note
نویسندگان
چکیده
منابع مشابه
A note on sparse least-squares regression
We compute a sparse solution to the classical least-squares problem minx ‖Ax−b‖2, where A is an arbitrary matrix. We describe a novel algorithm for this sparse least-squares problem. The algorithm operates as follows: first, it selects columns from A, and then solves a least-squares problem only with the selected columns. The column selection algorithm that we use is known to perform well for t...
متن کاملLeast-squares estimation in linear regression models with vague concepts
The paper is a contribution to parameter estimation in fuzzy regression models with random fuzzy sets. Here models with crisp parameters and fuzzy observations of the variables are investigated. This type of regressionmodelsmay be understood as an extension of the ordinary single equation linear regression models by integrating additionally the physical vagueness of the involved items. So the s...
متن کاملLeast squares estimation in a simple random coefficient autoregressive model.∗
The question we discuss is whether a simple random coefficient autoregressive model with infinite variance can create the long swings, or persistence, which are observed in many macro economic variables. The model is defined by yt = stρyt−1 + εt, t = 1, . . . , n, where st is an i.i.d. binary variable with p = P (st = 1), independent of εt i.i.d. with mean zero and finite variance. We say that ...
متن کاملLeast squares estimation of a linear regression model with LR fuzzy response
The problem of regression analysis in a fuzzy setting is discussed.A general linear regression model for studying the dependence of a LR fuzzy response variable on a set of crisp explanatory variables, along with a suitable iterative least squares estimation procedure, is introduced. This model is then framed within a wider strategy of analysis, capable to manage various types of uncertainty. T...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Austrian Journal of Statistics
سال: 2016
ISSN: 1026-597X
DOI: 10.17713/ajs.v41i3.175